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Goal Assist end-users in performing data science tasks that are too
complex, time-consuming, or overwhelming (automate & facilitate)

Examples

Automated Documentation of Data Science Experiments - how to
automatically detect and track relevant information and digital artifacts

Unsupervised Data Quality Validation - how to automatically detect data
quality issues without continuous manual inspection of data pipelines

Validating the predictions of Black-Box ML models - how to
demonstrate the effectiveness of Black-Box ML models on previously
unseen production data

Assisted Design of Data Science Pipelines - how to help novice-users
or domain experts design efficient end-to-end DS pipelines

Selected Publications

Automated Documentation of End-to-End Experiments in Data Science, PhD Workshop, ICDE’'19
Learning to Validate the Predictions of Black Box Machine Learning Models on Unseen Data, HILDA, SIGMOD’19
Towards Unsupervised Data Quality Validation on Dynamic Data, ETMLP, EDBT’20

Automating Data Quality Validation for Dynamic Data Ingestion, EDBT’21
DORIAN in Action: Assisted Design of Data Science Pipelines, VLDB’22


https://sergred.github.io/

Data Science Processes

Data collection (heterogeneous remote sources)
Data preprocessing (batch/streaming modes)
Data transformation (feature engineering)

\ @ Data validation
/ — Data mining and modeling

Understanding of the
problem / business
needs

Machine [deep] learning
Pipeline stacking
Post-processing Deployment and maintenance

Visualization

Reporting
Delivering precise and
actionable insights to the right

Performance evaluation . .
. ) person at the right time!
Meeting the business needs



A Lab Notebookiis ... *

« Complete record of procedures, reagents, data,
and thoughts to pass on to other researchers

* Explanation of why experiments were initiated, how
they were performed, and the results

* Main source for reproducibility of experiments

* Legal document to prove patents and defend your
data against accusations of fraud

+ Scientific legacy in the lab

* Keeping a Lab Notebook, NIH, Office of Intramural Training and Education
[https://www.training.nih.gov/assets/Lab_Notebook 508 (new).pdf]
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Automated Documentation of Data Science Experiments Jﬁfcﬁ?ﬁ??.'ﬁ

Berlin

80% of workload — solving technical problems
The reproducibility
Crisis in suence

. . v [P
e Multi-tenant environment A statictie

* Abundance of tools and frameworks — “glue” code, “smells”

ientists, ‘Janitor
rdle to Instghts

For Big-Data Se

. . . More | k’l KeyHu
* Lack of systematic holistic approaches ofend Vel

nor rep

e Try-Fail-Learn-Iterate paradigm «<----

Reproducibility as the core of the scientific method is at stake

30

https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1740-9713.2015.00827.x
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.

htm|
Sergey Redyuk Automated Documentation of End-to-End Experiments in Data Science 3 / 10



Validating the predictions of Black-Box ML models

l.i.d. target data: 25% corruption: 75% corruption:
accuracy = 0.9 accuracy = 0.82 accuracy = 0.56

CDF of positive CDF of positive CDF of positive
class predictions class predictions class predictions

-
-
-
-




Scenario |. Retail Company

Web Crawls

Key-Value

Preprocessing

Stores

Other Data

Preprocessing

Pipelines c

Preprocessing
{ 'S

‘| Database

Search Engine




Overall Challenges

Assistance required
- to bring down costs
-> toincrease scalability of data ingestion, experimentation, pipeline design, etc.

- toreduce the time domain experts and engineers have to spend on fixing DQ
issues, validating the models, aka ‘Janitor Work’

-> to adapt for non-expert users

Automation is not always possible
-> user input needed



Assisted Design of DS Pipelines

e Design of DS pipelines might be overwhelming for
domain experts and novice users

e [ven for ML experts, hard to keep up with new development

e Assisting tools are bound to a particular context

o Supported DS tasks
o Supported DS operators
o Supported evaluation processes

e \Whatif.. application domains surpass this context




Molecular Systems Biology

PRE-PROCESSING

I Raw data processing

Count
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Quality control Normalization
§
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3
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Count depth P el
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Data correction (e.g. batch) Feature selection
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Figure 1. Schematic of a typical single-cell RNA-seq analysis workflow.
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DOWNSTREAM ANALYSIS

Cluster annotation

Tuft cells,
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Enterocytes.

Trajectory inference
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P

Raw sequencing data are processed and aligned to give count matrices, which represent the start of the workflow. The count data undergo pre-processing and downstream

analysis. Subplots are generated using the best-practices workflow on intestinal epithelium data from Haber et al (2017).
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Figure 6. Cluster analysis results of mouse intestinal epithelium dataset from Haber et al (2017).

Molecular Systems Biology

Defa24

om0

(8) Annotated cell-identity clusters found by Louvain clustering visualized in a UMAP representation. (B) Cell-identity marker expression to identify stem cells (ic12a2),
enteracytes (Arg2), goblet cells (Tff3) and Paneth cells (Defa24). Corrected expression levels are visualized from low expression (grey) to high expression (red). Marker genes
may be expressed also in other cell-identity populations as shown for goblet and Paneth cells (C) Cell-identity composition heat maps of proximal (upper) and distal (lower)

intestinal epithelium regions. High relative cell density is shown as dark red.

© 2019 The Authors
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Auto-Sklearn 2.0: The Next Generation
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Abstract

WEKA is a widely used, open-source machine learning platform. Due to its intuitive in-
terface, it is particularly popular with novice users. However, such users often find it hard
to identify the best approach for their particular dataset among the many available. We
describe the new version of Auto-WEKA, a system designed to help such users by automati-
cally searching through the joint space of WEKA's learning algorithums and their respective
hyperparameter scftings to maximize performance, using a state-of-the-art Bayesian opti-
mization method. Our new package s tightly integrated with WEKA, making it just as
accessible to end users as any other learning algorithm

Keywords: Hyperparameter Optimization, Model Selection, Feature Selection

1. The Principles Behind Auto-WEKA

The WEKA machine learning software (Hall ot al., 2009) puts state-of-the-art machine
learning techniques at the disposal of even novice users. However, such users do not typically
now how to choose among the dozens of machine learning procedures implemented in
WEKA and each procedure’s hyperparameter settings to achieve good performance.
Auto-WEKA! addresses this problem by treating all of WEKA as a single, highly para-
metric machine learning framework, and using Bayesian optimization to find a strong instan-
tiation for a given dataset. Specifically, it considers the combined space of WEKA's learning
AK)

Ae Al

algorithms A = {AM, ..., A®} and their associated hyperparameter spaces A,
and aims to identify the combination of algorithm AU € A and hyperparameters
that minimizes cross-validation loss,

B

1 0 o

Aee angnin 23 £(a0,00,.0),

Aveaean b

1. Thormton et al (20131 fist introduced Auto-WEKA and empirically demonstrated state-of-the-art per-
formance. ere we deseribe an improved and more broadly ccessible implemetation of Auto-WEKA,
focussing on usabilty and softwaro design

©2017 Lars Kotthoff, Cluis Thoraton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.

e CC:  https: //creativecosmons .org/Licenses/by/4.0/  Atribution requirements are provided
at hetp://jalr . oxg/papers/v18/16-261 html
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ML-Plan: Automated machine lear:
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Abstract

Automated machine leaming (AutoML) seeks to automatically select, compose, and
parametrize machine leaming algorithms, 5o as to achieve optimal performance on a given
task (dataset). Although current approaches to AutoML have already produced impressive
results, the field is still far from mature, and new techniques are still being developed. In this
paper, we present ML-Plan, a new approach to AutoML based on hierarchical planning. To
highlight the potential of this approach, we compare ML-Plan to the state-of-the-art frame-
works Auto-WEKA, auto-sklearn, and TPOT. In f we show
that ML-Plan is highly and often existing approachy

Keywords Automated machine leaning - Automated planning - Algorithm selection -
Algorithm configuration - Heuristic search

1 Introduction

‘The demand for machine learing (ML) functionality is growing quite rapidly, and suc
machine learning applications
and soci i

ful
can be found in more and more sectors of science, technology,

there

an urgent need for suitable support in terms of tools that are casy to use. Ideally, the
induction of models from data, including the data preprocessing, the choice of a model class,
the training and evaluation of a predictor, the representation and interpretation of results,
etc., would be automated to a large extent (Lloyd et al. 2014). This has triggered the field of
automated machine learning (AutoML).

Editors: Jesse Davis, Elisa Fromont, Derek Greene, and Bjorn Bringmaan.

B3 Eyke Hillermeier
eyke@uni-paderbom.de
Felix Mohr
felix mohr@uni-paderborn.de
Marcel Wever
marcel.wever@uni-paderbor.de

Paderbor University, Warburger Str. 100, 33098 Paderborn, Germany
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https://docs.google.com/file/d/1O71I_lb9qLXoUXQ3R6e-lbkf30Z2tIpV/preview
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DS Pipeline Extractor

p = Pipeline([(
'scaler’',
StandardScaler()
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svC ()
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Evaluation, Classification

Predictive Performance Predictive Performance
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DORIAN in action: Assisted Design of Data Science Pipelines

[m] 3
‘

e Design of DS pipelines might be overwhelming for
E domain experts and novice users
* L l

e Assisting tools yield limited applicability in a wide

] range of application domains
E e DORIAN is a human-in-the-loop approach for the
= assisted design of DS pipelines that supports a large

and growing set of DS tasks, operators, and arbitrary
user-defined evaluation procedures.

Sergey Redyuk (sergev.redyuk@tu-berlin.de), Zoi Kaoudi, Sebastian Schelter, Volker Marki

echnische ' U HEIBRIDS '3 UNIVERSITY
Jn.fe,s.t';t E D110 fom o, ‘ BIFOLD Rl or amsterDAM

Berlin
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Evaluation, Regression & Clustering (manual)
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from sklearn.model_selection import train_test_split, GridSearchCV

import numpy as np

data_filepath, target = *...", ‘class’

data = pd.read_csv(data_filepath)
columns = list(data)

X, y = data[[col for col in columns if col != target]], data[target]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.1)

cat_cols = ['workclass', 'occupation’, 'marital_status']
num_cols = ['hours_per_week', 'age']

feature_transformation = ColumnTransformer(transformers=[
(‘cat_features', OneHotEncoder(handle_unknown='"ignore'), cat_cols),
(‘'scaled_numeric', StandardScaler(), num_cols)

)

pipeline = Pipeline([

(‘features’, feature_transformation),

('learner', SGDClassifier(max_iter=1000, tol=1e-3))
)

param_grid = {
'learner__alpha': [0.0001, 0.001, 0.01, 0.1]

search = GridSearchCV(pipeline, param_grid, cv=5)
model = search.fit(X_train, y_train)

predicted = model.predict(X_test)
acc = accuracy_score(y_test, predicted)
print("TRAIN. accuracy: %.4f" % (acc))

data

data
projection

column = target S
projection

| data

column == target |

predicted

user
output

model
evaluation

21
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Pipeline as DAG[Operation, ConnectionPoint]

Operation as f[List[Input], List[Output]], semantically enriched black box

Hyperparameter as special Input

DS ontology to decouple Operation’s intent from implementation
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[ Raw Data Loading, Data Quality Control,

1
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Design Decisions [cont.] e [
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T

" Embedding (a) " Embedding (b)

Evaluation Process supports arbitrary use cases

(pairwise comparison of candidates)

Interaction Table records user actions and preferences

Ranking Objectives are extendable and take into account two scenarios: where the end-user does or does not specify
the offset pipeline (aka Initial recommendations vs Incremental improvements)

Ranking considered a non-dominated sorting problem
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# loading the data, local file system : [background] preparing the predefined mappings o

B

houses = read_csv() R
T # scatter plot, houses size and price b - Targets - houses k e mapping-based code decomposition
gitvi. plot(houses$square, houses$price) i 71 ASSION - calFunc --- read csv |
# principal component analysis I D — e ’ R o el s 4 g
2 ts = PCA(h h Spri r- EXpre------ CallFunc --- plot -------oooooe- Args “-- Attr houses$price
:@: compo_nens_— ( ouse_s, ouses3price) L Assign <= Targets ------ components . Attr houses
# building a linear regression model - “~GallFung === PCA,ws=sewwmrsly Args - Attr houses$price @
model = linear_regression(houses$square, ! @modeltran
houses$price) i ‘ houses$square o

# performance evaluation
error(model.predict(houses$square),
houses$price) # > 20,000

- CallFunc _--- linear_regression - Args “- Atlr__ houses$price

model.predict(houses$square)
houses$price

saving the artifacts: models,o (_P
charts, performance metrics 0 /\}'

houses = read_p;v() : oz TAPGOLS rseen=s houses —
# preparing addmonal features ;o Assign ““-. callFunc --- read_csv =3
center = locatlon((52.5167, 13.3833)) T Targets oo~ center T
stores = load_store_location() {1 ASSION - callFunc --- location-- Args -- Attr Tuple((52.5167, 13.3833)) | oSS CoE
parks = load_park_location() to . _..- Targets ------ stores 1 e versioning
# augmenting new features into the data || 1 ASSIGN -~ callFunc --- load store location <
features = distance(houses$loc, Poit . Targets---—- parks 3
[center, stores, parks]) [ [ %ASS9" " callFunc ... load_park location
model = linear_regression(features, b e TAIgEIS features _- Attr_houses$loc
houses$price) || | ASSIgN *-- callFunc --- distance --------- Args - Attr _List([center, stores, parks])
error(model. predict(features), b = ikssign o THBES nonees moded _ A (R <
Alice houses$price) # > 10,000 3 ) CallFunc --- linear regression - Args ~-- Attr houses$pnc_e
EXpE------- CallFunc --- error--------------- Args .-- Attr model.predict(houses$square)
# loading the data, remote ftp Al heReice
Ci\) houses = load_data() :
# building the neural network, dense layer | saving lineage and metadata e >
# with 128 filters, 25% dropout, dense e Targets houses
# layer with 64 filters o SS19N - callFunc load_data o
model = DNN(layers=[ | b~ Assign ;7 TArgets ------ Meace! . List(Dense(128, input=features.shape),
Dense(128, input=features.shape), o Atiribute --- CallFunc -- DNN-- Args Attr (Dropot(Jt(OZS).pDense(64). o
Dropout(0.25), Dense(64), P ) Dense(1, activation="linear’)) e
Dense(1, activation="linear’) P - Attrhouses
])-fit(houses, houses$price) i | @model.evaluate CallFunc -- fit -- Args “-- Attr houses$price
error(model.predict(houses), ; EXpr.-coe-- CallFunc --- error ------- Args .-- Attr model.predict(houses)

Charlie houses$price) # > 5,000 " Attr housesS$price




Data partition to validate

A| B A | B A| B . A | B
Computing

descriptive v | 3.7 X | 4.1 v | 46 statistics on 45

SL4usHes Y39 | | X |44]| |V |36 newl Y [ 12

' ' ' partition '

Feature Vector

Completeness(A) .10 1.0 1.0 Labeling new 0.7
ApproxCountDistinct(A) (2.0 2.0 1.0 feature vector 2.0
Completeness(B) 1.0 1.0 1.0 . ) 1.0
ApproxCountDistinct(B) - | 3.0 3.0 3.0| | alarm if outlier 3.0
Maximum(B) 4.2 4.4 4.9 12.
Minimum(B) 3.7 3.3 3.6 kNN " 3.4
Mean(B) 3.9 3.9 4.3 Novelty | o s 99
StandardDeviation(B) 0.2 0.5 0.6 Detection |°_°* 93.8
] ) i o o e i i i, ki i
time t-3 -2 -1, yesterday t, today

-

b 4

Training novelty detection algorithm on feature vectors
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[ Pipeline H Data Loading H Relational Algebra+ H Validator ]——[ Ensemble ]——[ Imputer ]—-[ Sampler H GeneratorH Selector H Transform ]——[ Reducer ]——[ Estlmator]

NB: User Output | ‘-
NB: Control Flow

{ Pro;ectlon } GndSearch [ AdaBoost } Condmonal } [ ADASYN J { FromModeI ] { Fun::lion ] { P;.‘,A ] {DemsnonTree}
Median } [ SMOTE J [VThreshold] { Quantile ] { SVD ] {RandomFor }

{ Stack J Randomized [ Bagging } } [ Rnd Over } [ KBest ] [ Binarizer ] { RFE ] [ SVM J
[ Percentile ] { KBins ] [ Rnd‘Project] { LogisticR. }

{ Scalers+ ] { Feat.Agglom ] { GaussianNB }

{ PoLFeatures] { OneHotEnc. ]

Recursive Definition through composition rules, cycles and
multiple entry/exit points are implicit. Example below:

[[ Pipeline ]—-[ Pipeline H [ Identity } [ New } [Operator H Implementation H Parameter }

[ Imputer ]—[ Transformer ]—[ Estimator ]
1

1

Imputer ]—-[ Transformer H Transformer }»[ Estimator ]
1 1 1

[ Median ] [OneHotEnc.] [RandomFor.

KNN ] [ MinMaxScal. ] [ OneHotEnc. } [ RandomFor. H n_estimators 100

n_estimators

Flow Graph
NB: Probabilistic?

min_samples_split

Transformer

k=5

Edit Path:
Note: asymmetric, but symmetric distance

ADD ] { Transformer ] MinMaxScal. ]

KNN J [ MinMaxScal. ]

Parameter

O
min_samples_split ] @

CHANGE

[ n_estimators ] 100
Parameter [

J ( )
CHANGE ] { Transformer ]
J )
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Learn.

Q? g\q lterate.”

“Here is how | would

@%\AA?S)U\X‘\O < perform the task - the

choice is all yours”

“Specify data to analyze and the

task at hand - easy to start.” “Find the best solution.”
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‘| learn from past | % e,
experience of other \C‘ S \Q
people and improve \ '
my suggestions.” g > ' ‘ “Tell me what you think. Choose a solution you like
//'/’ more. Adapt to your needs. Add, remove, update.”
- i, Data Science toolbox became popular among natural and social scientists who
B S tend to get overwhelmed due to a large variety of available methods and
e parameters to choose from. This project aims to assist with an interactive
- m : environment where a user specifies the task at hand and receives guidance for
G e designing powerful data analytics based on curated past experience of others.
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